Journal of Organometallic Chemistry, 72 (1974) C11-C13 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

SYNTHESES OF *N*-SILYLFORMAMIDINES BY THE HYDROSILYLATION OF CARBODIIMIDES

C11

IWAO OJIMA and SHIN-ICHI INABA

Sagami Chemical Research Center, 4-4-1 Nishi-Onuma, Sagamihara 229 (Japan) and YOICHIRO NAGAI

Department of Chemistry, Gunma University, Kiryu, Gunma 376 (Japan)

(Received March 5th, 1974)

Summary

The hydrosilylation of carbodiimides was found to proceed at higher temperatures in the presence of catalytic amounts of palladium chloride or tris-(triphenylphosphine)chlororhodium to afford N-silylformamidines in high yield. These were found to be good precursors to formamidines and N-acetylformamidines.

Organotin hydrides are known to add to isocyanates [1] and carbodiimides [2]. However, the corresponding reaction of organosilicon hydrides or organogermanium hydrides has not been reported, except for our recent work on the hydrosilylation of isocyanates catalyzed by palladium [3]. Now, we wish to report that the hydrosilylation of carbodiimides is catalyzed by palladium chloride or tris(triphenylphosphine)chlororhodium.

 $R-N=C=N-R+R_{3}SiH \xrightarrow{PdCl_{2} \text{ or}} SiR_{3}$ $R=isopropyl, cyclohexyl \qquad (1)$

A typical procedure is as follows: a mixture of N,N'-diisopropylcarbodiimide (2.52 g, 20 mmol), triethylsilane (2.78 g, 24 mmol) and palladium chloride (35 mg, 0.2 mmol) was sealed in a pyrex tube and heated at 150° for 15 h. Distillation of the reaction mixture gave N,N'-diisopropyl-N-triethylsilyiformamidine (3.95 g) in 82% yield. The yield of the product in the palladium chloride catal \therefore ad reaction depends on the reaction conditions and good results were obtained at relatively high temperatures (~ 200°), although the reaction proceeds even at 120°. In the case of the rhodium catalyst, the most suitable temperature range is 130–150°. In the absence of these catalysts, the hydro-

HYDROSILYLATION OF CARBODIIMIDES CATALYZED BY PdCl ₂ OR (Pb ₃ P) ₃ RhCl							
Carbodiimide	Hydrosilane ^a	Catalyst ^b	Conditions	Conversion ^c (%)	Yield (%)		
i-Pr-N=C=N-Pr-i	Et, SiH	PdCl ₂	140°, 15 h	84	98		
i-Pr-N=C=N-Pr-i	EtMe ₂ SiH	PdCl ₂	140°, 15 h	75	93		
i-Pr-N=C=N-Pr-i	EtMe,SiH	PdCl ₂	200°, 48 h	92	97		
i-Pr-N=C=N-Pr-i	PhMe ₂ SiH	PdCl ₂	200°, 48 h	100	83		
i-PrN=C=N-Pr-i	EtMe,SiH	(Ph,P),RhCl	140°, 15 h	80	60		
i-Pr—N=C=N—Pr-i	PhMe, SiH	(Ph,P),RhCl	150°, 36 h	100	80		
C ₆ H ₁₁ -N=C=N-C ₅ H ₁₁ ^e	Et ₃ SiH	PdCl ₂	200°, 48 h	96	96		
C_6H_{11} -N=C=N-C_6H_{11}	EtMe ₂ SiH	PdCl ₂	200°, 48 h	64	95		
$C_6H_{11} \rightarrow N = C = N - C_6H_{11}$	Et,SiH	(Ph ₃ P) ₃ RhCl	140°, 15 h	60	75		

^a 10-50% excess hydrosilane was used. ^b 1 mol% of PdCl₂ or 0.5 mol% of (Ph₃P)₃RhCl was used based on a carbodiimide was determined by GLPC analysis. ^d Yield was determined by GLPC analysis based on carbodiimide consumed. ^e C₆H₁₁ = cyclohexanyl.

silanes employed did not add at all to carbodiimides even at 200° (36 h reaction time). Results are summarized in Table 1.

The IR spectra of the adducts showed no absorption band due to NH stretching, and their NMR spectra displayed a singlet in the region δ 7.4–7.5 ppm which is assigned to a methine proton. Thus, the adducts are N-silylformamidines (I). Spectral data for these products are shown in Table 2.

TABLE 2

SPECTRAL DATA FOR THE OBTAINED N-SILYLFORMAMIDINES^a

N-Silylformamidine	B.p. (°C/mmHg)	IR (cm ⁻¹)	NMR (δ, ppm) CH=N	
		ν(C=N)		
i-Pr(Et ₃ Si)N-CH=N-Pr-i	75/1.11	1630	7.43	
i-Pr(EtMe_Si)N-CH=N-Pr-i	58/4	1640	7.49	
i-Pr(PhMe,Si)N-CH=N-Pr-i	80/0.4	1635	b	
$C_{\delta}H_{11}$ (Et ₃ Si)N-CH=N-C_{\delta}H_{11}	133/0.4	1630	7.53	
$C_{\theta}H_{11}$ (EtMe ₂ Si)N-CH=N-C_{\theta}H_{11}	96/0.1	1640	7.50	

^a 1R, NMR and elemental analyses for the new compounds are consistent with the assigned structures. ^b A signal of the methine proton of this compound overlaps in phenyl protons. ^c $C_6H_{11} =$ cyclohexanyl.

The N-silylformamidine (I) reacted exothermally with water or methanol to give a formamidine (II) [4] in quantitative yield. [N,N'-diisopropylformamidine, m.p. 47–48°, NMR (CCl₄, TMS) δ 4.77 s (NH), 7.30 s (CH=N), IR (KBr disk) 3250 (ν (NH)) and 1650 cm⁻¹ (ν (C=N)); N,N'-dicyclohexylformamidine, m.p. 101–102° (lit. [5] 100–102°)].

Treatment of N-silylformamidines (I) with an equimolar quantity of acetyl chloride at ambient temperature resulted in the production of N-acetyl-formamidines (II) in nearly quantitative yield, e.g., N,N'-diisopropyl-N-acetyl-formamidine [b.p. 44°/0.4 mmHg, NMR (CCl₄, TMS) δ 2.17 s (CH₃CO), 8.05 s (CH=N), IR (neat) 1690 (ν (C=O)) and 1640 cm⁻¹ (ν (C=N))] and N,N'-dicyclohexyl-N-acetylformamidine [m.p. 80–81°, NMR (CDCl₃, TMS) δ 2.33 s (CH₃CO), 8.27 s (CH=N), IR (KBr disk) 1675 (ν (C=O)) and 1645 cm⁻¹ (ν (C=N))].

TABLE 1

References

 D.H. Lorenz and E.I. Becker, J. Org. Chem., 28 (1963) 1707; J.G. Noltes and M.J. Janssen, J. Organometal. Chem., 1 (1964) 346; Yu.I. Dergunov, A.V. Pavlycheva, V.D. Sheludyakov, I.A. Vostokov, Yu.I. Mushkin, V.F. Mironov and V.P. Kosyukov, Zh. Obshch. Khim., 42 (1972) 2501.

C13

- 2 W.P. Neumann and E. Heymann, Ann. Chem., 683 (1965) 24.
- 3 L. Ojima, S. Inaba and Y. Nagai, Tetrahedron Lett., (1973) 4363.
- 4 Y. Kikugawa and S. Yamada, Tetrahedron Lett., (1969) 699.